

La gestione sicura dell'invecchiamento delle attrezzature negli stabilimenti "Seveso"

Webinar INAIL, 18 maggio 2021

L'invecchiamento degli impianti e la gestione dell'integrità meccanica: Risultanze delle attività ispettive svolte in stabilimenti Seveso e possibili opportunità di miglioramento

Fabrizio Vazzana

ISPRA-Rischi Industriali

La normativa

- Il Decreto legislativo 105/2015, di recepimento della Direttiva Seveso III
- Allegato 3- controllo operativo: monitoraggio e controllo dei rischi legati all'invecchiamento delle attrezzature installate nello stabilimento e alla corrosione
- Allegato B: «Devono, inoltre, essere previsti piani di monitoraggio e controllo dei rischi legati all'invecchiamento (corrosione, erosione, fatica, scorrimento viscoso) di apparecchiature e impianti che possono portare alla perdita di contenimento di sostanze pericolose, comprese le necessarie misure correttive e preventive.

La normativa

- La normativa tecnica, presente in Italia dagli anni 90 e predisposta per fornire a chi la utilizza specifici strumenti per l'implementazione del SGS-PIR:
 - UNI 10617: Requisiti essenziali
 - UNI 10616: Linee guida per l'attuazione della UNI 10617
 - UNI 10672: Sicurezza nella progettazione
 - UNI 11226 parte 1 e 2: Procedure e requisiti per gli audit
- Specificamente citate nel decreto di recepimento della Direttiva Seveso come "stato dell'arte" e sviluppate per garantire sia il rispetto dei requisiti di legge, sia la strutture degli altri standard ISO

Esperienza storica-le ispezioni

Esaminati 500 rapporti ispettivi nel triennio 2018-2020

Nel 40% dei casi riscontrate problematiche sulla corretta gestione delle apparecchiature critiche

Nel 50% dei casi riscontrate problematiche sulla corretta gestione dell'integrità meccanica

Esperienza storica-le ispezioni-1

- Necessario che il gestore approfondisca le problematiche dei rischi legati all'invecchiamento (per corrosione, erosione, fatica e scorrimento viscoso) di apparecchiature e impianti, che possono portare a perdite di contenimento di sostanze pericolose, prevedendo, ove pertinente, uno specifico piano di monitoraggio e controllo, comprese le misure correttive e preventive
- Non risulta evidenza di un piano di monitoraggio e controllo dei rischi legati all'invecchiamento di apparecchiature se non in funzione degli obblighi di legge

Esperienza storica-le ispezioni-2

- Sviluppata una procedura sull'Asset Integrity Management, ben strutturata ed in grado di gestire anche la problematica dell'invecchiamento, ma parzialmente attuata
- Assenza di una procedura specifica per il monitoraggio e il controllo dell'invecchiamento. La procedura, indirizzata alle attrezzature a pressione (recipienti, tubazioni, ecc.) dovrà contenere per ciascuna attrezzatura:
 - una analisi dei meccanismi di degrado esistenti o che potrebbero ingenerarsi nel tempo, un calcolo di vita consumata per effetto del meccanismo di danno individuato (es. fatica, corrosione, ecc.)
 - un piano di controllo a scadenze prefissate o, in alternativa, un piano di monitoraggio in funzione del tempo, le tecniche da utilizzare
 - un riferimento alle azioni preventive e alle eventuali azioni correttive

Conclusioni e suggerimenti

- Per assicurare una sufficiente integrità meccanica dei componenti legati ai processi operativi è necessaria una sistematizzazione delle metodologie di controllo delle apparecchiature
- In particolare ispezioni e controlli per verificare periodicamente (e prima del guasto) che i sistemi essenziali per la sicurezza mantengano la loro affidabilità per tutto il ciclo di vita operativa in modo da prevenire eventuali guasti che possano portare a perdite di contenimento di sostanze pericolose
- Il SGS-PIR dovrebbe garantire che ogni apparecchiatura critica sia soggetta a un programma di controlli (manutenzione e verifica) adeguatamente calendarizzato in modo da garantire nel tempo il mantenimento dei requisiti di sicurezza fino alla messa fuori servizio

- L'identificazione e la gestione delle problematiche dell'invecchiamento in relazione alla sicurezza del processo è riconducibile ad una serie di elementi chiave del SGS-PIR:
 - Sistemi di gestione della manutenzione
 - Gestione delle risorse e sistemi di integrità
 - Regimi di audit e ispezione
 - Processi di gestione della valutazione dei rischi
 - Gestione delle modifiche
 - Permessi di lavoro
 - Responsabilità e comunicazioni
 - Sviluppo della formazione e delle competenze

In particolare

- Il piano d'integrità dei sistemi e dei componenti critici per la PIR deve assicurare sia il contenimento delle sostanze pericolose all'interno delle apparecchiature e/o linee critiche sia il funzionamento dei sistemi di sicurezza attiva e passiva critici previsti dall'impianto
- I diversi sistemi soggetti all'invecchiamento possono essere ricondotti a quattro tipologie di base (HSE, 2010):
 - sistemi di contenimento primario;
 - misure di controllo e mitigazione (salvaguardie di processo, sistemi di contenimento secondari o terziari, sistemi antincendio, salvaguardie ambientali esterne)
 - sistemi di controllo, elettrici e strumentali
 - strutture

Sistemi di contenimento primari

- Definizione dei meccanismi di degrado
 - corrosione: interna o esterna, localizzata o generalizzata
 - deformazioni, rotture meccaniche, cricche sulle saldature, cedimenti
- Tecnologie ispettive «personalizzate
 - Ispezione visiva (VT) -Liquidi penetranti (PT) -Magnetoscopia (MT) -Vacuum box test -Ultrasuoni (UT) -Emissioni acustiche (AE)
- Fattori da considerare per determinare la frequenza delle ispezioni
 - Prodotto stoccato -Ratei di corrosione -Rischi potenziali di inquinamento di suolo, acqua, aria -Presenza o meno di sistemi di rilevamento perdite

Importante

- Registrazione e analisi dell'esperienza operativa di stabilimento (ad esempio, le ore di funzionamento, i cicli di lavoro, le variazioni operative, come dei parametri di processo) comprese le anomalie o problematiche occorse
- Monitorare e sorvegliare la correttezza e affidabilità delle attività svolte (sia da personale interno che da imprese appaltatrici) valutando I risultati dei controlli e conservandone tutte le registrazioni
- Sorvegliare, attraverso la "Gestione delle modifiche", l'introduzione di nuovi processi o sostanze che possono generare nuovi rischi da corrosione

Il controllo operativo deve essere attuato con specifiche procedure e/o istruzioni (gestione delle anomalie di processo e delle perdite di contenimento)

L'identificazione delle apparecchiature e delle linee critiche deve essere contenuta nell'analisi di rischio e deve costituire la base di uno specifico piano d'ispezioni/controlli

La manutenzione delle apparecchiature o linee critiche può essere eseguita secondo i criteri o Best Practices di RBM (Risk Based Maintenance) disponibili

Un valido aiuto

Non solo per gli ispettori, ma anche per tutte quelle realtà che non dispongono di processi strutturati già in essere

Come strumento di autoanalisi preliminare o di ulteriore verifica della correttezza delle strategie messe in atto

GRAZIE PER L'ATTENZIONE

fabrizio.vazzana@isprambiente.it

